Stat 134 len 19 (no eec 18)
Warmup
Let $X \sim \operatorname{Unif}(0,1)$ be the standard Uniform
picture
 distribution with histogram (density)

$$
f(x)=\left\{\begin{array}{l}
1 \text { if } 0<x \leqslant 1 \\
0 \text { else }
\end{array}\right.
$$

Dethre

$$
E(x)=\int_{x=-\infty}^{\infty} x f(x) d x
$$

$E(x)=\int_{x f(x) d x}^{\infty}$ - $\left.\int^{1} x f(a) d x=\int^{1} x d x\right), E\left(x^{2}\right)$, and $\operatorname{Var}(x)$.
$E(x)=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{1} x f(A) d x=\int_{0}^{1} x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{1}=1 / 2$
$E\left(x^{2}\right)=\int_{-\infty}^{\infty} x^{2} f(x) d x=\int_{0}^{1} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{0} ^{1}=1 / 3$

$$
V \operatorname{cov}(x)=E\left(x^{2}\right)-(E(x))^{2}=\frac{1}{3}-1 / 4=1 / 12
$$

Last time
Congreatations on flrishling midterm 1 !
today
Sec 4.1 Continuous Distribution $>$
(1) Puobability density
(2) Change of scale
(3) expectation aud veritence.
(1) $\sec 4.1$ Probability density.
let X be a coutinoon RV
The probability density (histogram) of X is described by a prob densisity function
$f(x) \geq 0$ for $x \in X$
and $\int_{-\infty}^{\infty} f(x) d x=1$
ex The standard normal distribution

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(\frac{-x^{2}}{2}\right)
$$

By geometry,
the chance of picking a pt under the curve in the red strip above is $f(x) d x$, where x is the x coordinate of the point, and $d x$ is the ubdth of the strip.

If $f(x)$ isut a density, to make it a density divide it by the aver under $f(x)$,
ex 4.1.12b
Consider a point picked uniformly at random from the area inslie the following twi angle
 Find the density function of the x - coordinate $f(x)$

$$
A=\frac{1}{2} \cdot 3 \cdot 2=3
$$

Pick a 14 unifurmily at random inside te triangle the chur you get te x coorolluate of that polit x te aver of the shin above x divided by ty te tool area, he need to scale dounth height of to trience so te area ot te twiarle is 1 . To di this divide

$$
\begin{aligned}
& g(x), h(x) \text { by } A=3 \\
& f(x)= \begin{cases}\frac{x+2}{3} & -2 \leq x \leq 0 \\
\frac{-2 x+2}{3} & 0 \leqslant x \leq 1 \\
0 & \text { elsc }\end{cases}
\end{aligned}
$$

Note there is nothing special abot the shuse being a tritange, It could be a hatf circle with sadlus 1 for examsle.

Heve the quen is $\frac{\pi}{2}$. To mate 9 into a density divide it by $\pi / 2$

$$
f(x)=\frac{\sqrt{1-x^{2}}}{\pi / 2}
$$

Swrocse te shiene uas a fill circle of radius 1 Nou part of the shar is ondi- te x ands.
 If you flit te botton semicirle and it to the top gou get a shree
 that is eastan
to finim abot. Thls isut a densily. To mare it a dons!ly diutoe by π

$$
f(x)=\left\{\begin{array}{cl}
\frac{2 \sqrt{1-x^{2}}}{\pi} & -1 \leq x \leq 1 \\
0 & \text { else }
\end{array}\right.
$$

ex 4.1.12a
Consider a point picked/unjiformiy at random
from the area inside the following shape Final te density. $f(x)$ q

$(0,-2)$

$$
f(x)=\left\{\begin{array}{cl}
\frac{2(x+2)}{8} & -25 x \leq 0 \\
\frac{2(-x+2)}{8} & 0 \leqslant x \leqslant 2 \\
0 & \text { else }
\end{array}\right.
$$

(2) Change of scale

A change of scale is a transformation $Y=m+n X$, of X. The purpose is that it maxes it easter to calculate $E(A)$ and $\operatorname{Var}(X)$. It mars one density to another.
er

eve

ex

Std normal

Suppose a manufacturing process designed to produce rods of length 1 inch exactly, in fact produces rods with length distributed according to the density graphed below.

You should change the scale of $X=$ the length of rods to:$a: X-1$b: .1(X-1)c: 10X-1
8 d: none of the above

Expectation and Variance
For discrete,

$$
E(g(x))=\sum_{x \in X} g(x) P(x=x)
$$

$$
\begin{aligned}
& \text { For continuous) } \\
& E(g(x))=\int_{-\infty}^{\infty} g(x) P(X e d x)=\int_{-\infty}^{\infty} g(x) f(x) d x \\
& E(x)=\int_{-\infty}^{\infty} x f(x) d x \\
& E\left(x^{2}\right)=\int_{-\infty}^{\infty} x^{2} f(x) d x \\
& \operatorname{Var}(x)=E\left(x^{2}\right)-E\left(x^{2}\right.
\end{aligned}
$$

See haumbp for example,
er
Suppose a manufacturing process designed to produce rods of length 1 inch exactly, in fact produce's rods with length distributed according to the density graphed below.

Find te vankence of the length of the rods. $y=10(x-1)$ change of sale. easier to find.

$$
\operatorname{Var}(y)=100 \operatorname{Var}(x) \Rightarrow \operatorname{Var}(x)=\frac{\operatorname{Var}(y)}{100}
$$

Final the diassity of Y :

$$
f(y)=\left\{\begin{array}{cc}
y+1 & -1 \leq y \leq 0 \\
-y+1 & 0 \leq y \leq 1 \\
0 & \text { else }
\end{array}\right.
$$

Final $\operatorname{Var}(x)$

$$
\begin{aligned}
& \operatorname{Var}(y)=E\left(y^{2}\right)-(E(-y))^{2} \\
E\left(y^{2}\right) & =\int_{-1}^{0} y^{2}(y+1) d y+\int_{0}^{1} y^{2}(-y+1) d y \\
& =\int_{-1}^{0} y^{3} y+\int_{-1}^{0} y^{2} d y-\int_{0}^{1} y^{2} d y+\int_{0}^{1} y^{2} d y \\
& =\left.\frac{y^{4}}{4}\right|_{=1} ^{0}+\left.\frac{y^{3}}{3}\right|_{-1} ^{0}-\left.\frac{y^{4}}{4}\right|_{0} ^{1}+\left.\frac{y^{3}}{3}\right|_{0} ^{1}=-\frac{1}{4}+\frac{1}{3}-\frac{1}{4}+\frac{1}{3} \\
E(y) & \left.=0 \Rightarrow \operatorname{Var}^{2}(y)=1 / 6\right)=1 / 6
\end{aligned}
$$

