Stat 134: Section 11

Adam Lucas

March 9th, 2023

Conceptual Review

Consider a Poisson Process with rate λ per unit time. Identify what each random variable represents, and find the distributions of:
a. N_{t};
b. W_{k};
c. T_{k}. (How is this different from (b)?)

Problem 1

Suppose calls are arriving at a telephone exchange at an average rate of one per second, according to a Poisson arrival process. Find:
a. the probability that the fourth call after time $t=0$ arrives within 2 seconds of the third call;
b. the probability that the fourth call arrives by time $t=5$ seconds;
c. the expected time at which the fourth call arrives.

Ex 4.2.5 in Pitman's Probability

Problem 2: Gammas, Exponentials, and Moments

Consider the gamma function $\Gamma(r)=\int_{0}^{\infty} x^{r-1} e^{-x} d x, \quad r>0$.
a. Use integration by parts to show that $\Gamma(r+1)=r \Gamma(r)$.
b. Deduce from (a) that for any positive integer $n, \Gamma(n)=(n-1)$!
c. Show that if $T \operatorname{Exp}(1)$, then $\mathbb{E}\left(T^{n}\right)=n$!.
d. Show that if $S=T / \lambda$, then $S \operatorname{Exp}(\lambda)$. (Note: from this, we can

Hint: Consider the expression $P(S>s)$, then substitute for S appropriately.

Ex 4.2.9 in Pitman's Probability

Problem 3

Shocks occur to a system according to a Poisson process of rate λ. Suppose that the system survives each shock with probability α, independently of other shocks, so that its probability of surviving k shocks is α^{k}. What is the probability that the system is surviving at time t ?

