Stat 134: Section 14

Adam Lucas

March 21st, 2023

Conceptual Review

What functions have we used to characterize (i.e., fully describe) distributions of random variables? We have seen four.

Problem 1

Suppose R_{1} and R_{2} are two independent random variables with the same density function $f(x)=c \sin (x)$ when $x \in[0, \pi]$ and 0 in other case.
a. Find c such that f is a PDF Find the CDF of R_{1}.
b. Find the PDF and the CDF of $Y=\min \left(R_{1}, R_{2}\right)$.

Problem 2: Geometric from Exponential

Show that if $T \sim \operatorname{Exp}(\lambda)$, then $Z=\operatorname{int}(T)=\lfloor T\rfloor$, the greatest integer less than or equal to T, has a geometric (p) distribution on $\{0,1,2, \ldots\}$. Find p in terms of λ.

How can we use the CDF of Z to simplify this problem?

Problem 3

Let $U_{(1)}, \ldots, U_{(n)}$ be the values of n i.i.d. Uniform (0,1) variables arranged in increasing order. For $0<x<y<1$, find a simple formula for:
a. $P\left(U_{(1)}>x, U_{(n)}<y\right)$
b. $P\left(U_{(1)}>x, U_{(n)}>y\right)$
c. $P\left(U_{(1)}<x, U_{(n)}<y\right)$
d. $P\left(U_{(1)}<x, U_{(n)}>y\right)$

Ex 4.6 .3 in Pitman's Probability

