Stat 134: Section 16 Adam Lucas April 6th, 2023

Conceptual Review

- a. If *X*, *Y* are independent with $N(\mu, \sigma^2)$ and $N(\lambda, \tau^2)$, then what is distribution of aX + bY + c?
- b. What is chi-square distribution? Is that a distribution that we already know?
- c. Let *X*, *Y* have joint density $f_{X,Y}(x, y) > 0$ for all x, y > 0. Set up an integral that would yield the density of Z = X + Y and W = X/Y.
- d. Repeat (a), but for Z = 3X + 4Y + 5 and W = 2X/Y + 3.

Problem 1

Let X and Y be independent standard normal variables. Find:

- a. P(3X + 2Y > 5)
- b. $P(\min(X < Y) < 1)$
- c. $P(|\min(X < Y)| < 1)$
- d. $P(\min(X, Y) > \max(X, Y) 1)$

Problem 2

Let $X \sim \text{Unif (0,1)}$, and $Y \sim \text{Unif (0,2)}$, independent of each other. Find the density of Z = X + Y, using:

- a. the convolution formula;
- b. the CDF of Z.

Problem 3: Competing Exponentials

Suppose *X* ~ Exp (λ_X), *Y* ~ Exp (λ_Y), and *X*, *Y* are independent.

- a. Find P(X < Y).
- b. Find the density of S = X + Y, and using part (a), find the density of T = X/Y. (Hint: look at the CDF of *T*.)
- c. Now suppose $\lambda_X = \lambda_Y = \lambda$, and find the distribution of $W = \frac{X}{X+Y}$. (Simplify F_W , and you should recognize W as one of our famous distributions.)