Stat 134: Section 18 Adam Lucas April 13th, 2023

Problem 1

Let $X \sim \text{Geom}(p)$ on $\{1, 2, \dots, \}$. Let $Y \sim \text{Uniform}\{0, 1, \dots, X\}$ (that is, given X = x, Y is uniformly distributed from 0 to x).

- 1. Find $\mathbb{E}(Y|X=k)$;
- 2. Find $\mathbb{E}(Y)$.

Problem 2

Let X_1, \ldots, X_n be independent Poisson random variables with parameters $\lambda_1, \ldots, \lambda_n$ respectively. Find the conditional distribution of X_1 , given $X_1 + \cdots + X_n = N$ for $N \ge 1$. Is this a distribution that you know?

Problem 3: Exponential and Uniform spacing

Let X_1, \ldots, X_n be independent Exponential random variables with parameter $\lambda = 1$, and let $X_{(1)}, \ldots, X_{(n)}$ be the order statistics.

- a. Find the joint density of $Z = X_{(r)}$, $W = X_{(s)} X_{(r)}$ for $1 \le r < s \le n$. Are Z, W independent?.
- b. Prove that $e^{-X_{(n)}}, \ldots, e^{-X_{(1)}}$ has the same distribution with $(U_{(1)}, \ldots, U_{(n)})$ from Unif[0, 1], and conclude that $U_{(r)}/U_{(s)}$, $U_{(s)}$ are independent.