Stat 134: Section 19

Adam Lucas

April 18th, 2023

Problem 1: Conditioning on the First Toss

Let X be the number of tosses to get heads in a coin that lands heads with probability p.
a. Argue that given the first toss is tails, the number of tosses to get heads is modeled by $1+X^{*}$, where X^{*} and X have the same distribution.
b. Let I_{1} be the indicator of whether the first toss is heads. Use part (a) and the rule $\mathbb{E}(X)=\mathbb{E}\left(\mathbb{E}\left(X \mid I_{1}\right)\right)$ to show $\mathbb{E}(X)=1 / p$.

Problem 2

Let $X \sim$ Exponential (λ), and let $Y \sim$ Poisson (X) (that is, given $X=x, Y$ follows the Pois (x) distribution).
a. Find $P(X \in d x, Y=y)$;
b. Use (a) to find the unconditional distribution of Y;
c. Given $Y=y$, what is the conditional density of X ? (Hint: use Bayes' Rule).

Problem 3

Suppose that a point (X, Y) is uniformly chosen at a random from the triangle

$$
\{(x, y): x \geq 0, y \geq 0, x+y \leq 2\}
$$

a. Find a formula for $P(Y \leq y \mid X=x)$.
b. Find $E[Y \mid X=x]$.
c. FInd $\operatorname{Var}[Y \mid X=x]$.

Problem 4

Define $\operatorname{Var}[Y \mid X]$, the conditional variance of Y given X, to be the random variable whose value, if $(X=x)$, is the variance of the conditional distribution of Y given $X=x$. So $\operatorname{Var}[Y \mid X]$ is a function of X, namely $h(X)$, where $h(x)=E\left[Y^{2} \mid X=x\right]-[E[Y \mid X=x]]^{2}$.
a. Show that $\operatorname{Var}(Y)=E[\operatorname{Var}(Y \mid X)]+\operatorname{Var}[E(Y \mid X)]$.
b. Check part a. for joint distribution in Problem 3 above.

