Stat 134: Section 20

Adam Lucas

April 25th, 2023

Conceptual Review

a. What is the computational formula for covariance?
b. If X and Y are independent, what is $\operatorname{Cov}(X, Y)$?
c. Use bilinearity of covariance to expand $\operatorname{Cov}(a X+Y, Y+Z)$, where a is a constant.

Problem 1

Let X have uniform distribution on $\{-1,0,1\}$ and let $Y=X^{2}$. Are X and Y uncorrelated? Are X and Y independent? Explain carefully. Ex 6.4.5 in Pitman's Probability

Problem 2

Let A and B be two possible results of a trial, not necessarily mutually exclusive. Let N_{A} and N_{B} be the number of times A and B respectively occur in n i.i.d. copies of this trial. Show that if N_{A} and N_{B} are uncorrelated, then events A and B are independent.

What is this problem asking us to show? How does this connect to $\operatorname{Cov}\left(N_{A}, N_{B}\right) ?$

Problem 3

Let S and T be random variables with variances σ^{2}, τ^{2} respectively. Suppose $\operatorname{Corr}(S, T)=\rho$. Find $\operatorname{Var}(3 S+2 T)$. (Hint: begin by finding $\operatorname{Cov}(S, T)$ based on the provided information.)

