Stat 134: Section 20 Adam Lucas April 25th, 2023

Conceptual Review

- a. What is the computational formula for covariance?
- b. If X and Y are independent, what is Cov(X, Y)?
- c. Use bilinearity of covariance to expand Cov(aX + Y, Y + Z), where *a* is a constant.

Problem 1

Let *X* have uniform distribution on $\{-1, 0, 1\}$ and let $Y = X^2$. Are *X* and *Y* uncorrelated? Are *X* and *Y* independent? Explain carefully. *Ex* 6.4.5 *in Pitman's Probability*

Problem 2

Let *A* and *B* be two possible results of a trial, not necessarily mutually exclusive. Let N_A and N_B be the number of times *A* and *B* respectively occur in *n* i.i.d. copies of this trial. Show that if N_A and N_B are uncorrelated, then events *A* and *B* are independent. *Ex* 6.4.13 *in Pitman's Probability*

What is this problem asking us to show? How does this connect to $Cov(N_A, N_B)$?

Problem 3

Let *S* and *T* be random variables with variances σ^2 , τ^2 respectively. Suppose $Corr(S, T) = \rho$. Find Var(3S + 2T). (Hint: begin by finding Cov(S, T) based on the provided information.)

Prepared by Brian Thorsen and Yiming Shi