Stat 134: Section 21

Adam Lucas

April 27th, 2023

Conceptual Review

a. What is Φ^{-1} ?
b. Let X, Y be independent standard normal. Identify the distribution of:
(i) X^{2};
(ii) $X^{2}+Y^{2}$;
(iii) $\sqrt{X^{2}+Y^{2}}$
c. If X, Y are standard bivariate normal with correlation ρ, where $Y=\rho X+\sqrt{1-\rho^{2}} Z$, what is the conditional distribution of Y given $X=x$? What about the conditional distribution of X given $Y=y$?

Problem 1

Heights and weights of a large group of people follow a bivariate normal distribution, with correlation 0.75 . Of the people in the goth percentile of weights, about what percentage are above the goth percentile of heights?
Ex 6.5.3 in Pitman's Probability

Problem 2

Let X and Y be independent standard normal variables.
a. For a constant k, find $\mathbb{P}(X>k Y)$.
b. If $U=\sqrt{3} X+Y$, and $V=X-\sqrt{3} Y$, find $\mathrm{P}(U>k V)$.
c. Find $\mathbb{P}\left(U^{2}+V^{2}<1\right)$.
d. Find the conditional distribution of X given $V=v$.
e. What is the joint distribution of U, V ?

Ex 6.5.6 in Pitman's Probability

Problem 3

Show that for standard bivariate normal random variables with correlation ρ,

$$
E[\max (X, Y)]=\sqrt{\frac{1-\rho}{\pi}}
$$

Ex 6.5.11 in Pitman's Probability

